
ChatWorld: embodied multi-agent simulation for
extensible production of hypermedia

Adrian Biedrzycki
Upstreet.ai

ultimus@gmail.com

August 17, 2023

Contents

1 Abstract 4

2 Introduction 4
2.1 Motivation . 4
2.2 Agent Systems . 5

2.2.1 Multi-modal Agents . 5
2.2.2 Multi-Agent Systems . 6
2.2.3 User agency . 7
2.2.4 Programmability . 7

2.3 Framework and Architecture . 7
2.3.1 Agent Loop . 7
2.3.2 Agent SDK . 8
2.3.3 Simulation Layer . 8
2.3.4 Rendering Interface . 8
2.3.5 Networking System . 9

2.4 Generative Assets . 9
2.5 Character Generation . 9
2.6 World Generation . 10

2.6.1 Skybox Depth Model (Blockade Labs) 10
2.6.2 Comic Panel Depth Model (Midjourney + MiDaS + ZoeDepth) . . . 11
2.6.3 Continuous Guided Video Model (Deforum) 11
2.6.4 Unguided video model (AnimateDiff) 12

2.7 Item Generation . 12
2.8 Audio Generation . 12
2.9 Sound Effects Generation . 12

3 Architecture Loop 12

4 User Interface 13
4.1 System Interface . 13
4.2 Language-Model-Led Modules (LLM) . 14
4.3 Agent Model Interface . 14
4.4 Rendering Interface . 14

5 Experimental Applications 14
5.1 Companion Agent . 14
5.2 Infinite TV Show . 14
5.3 Interactive Virtual Game World . 14
5.4 ”Infinite Anime” TV Show . 15
5.5 AGI Programming Agent . 15

5.5.1 Massively Multiplayer Online video game 15

2

6 Future direction 15
6.0.1 Massively Multiplayer Online video game 15
6.0.2 Real-world embodiment . 15
6.0.3 Financial imbuement . 15

7 Conclusion 16
7.1 Generative assets . 16
7.2 World rendering . 16
7.3 Visual Perception Loops . 16
7.4 Generative AI Components . 16
7.5 Memory Subsystem . 16
7.6 Real-time Rendering Interface . 16
7.7 Applications . 16

7.7.1 Interactive Game World (”metaverse”) 16
7.7.2 Infinite TV Show . 16
7.7.3 Autonomous Programming Agent (”Citrine”) 16

7.8 Multi-actor Decision Agent (”Jedi Council”) 16
7.9 Blockchain integration . 17
7.10 Technical Performance . 17

8 Future Directions 17

9 Conclusion 17

10 Acknowledgements 17

11 References 17

12 Appendix 19
12.1 Image gallery . 19

3

1 Abstract

Perception of the practical merge of humans and AI has shifted from theoretical to achievable,
owing to the distribution of generative AI models like ChatGPT and Stable Diffusion. This
has introduced serious concerns about how humans and AIs can cooperate among themselves
and each other.

We introduce ChatWorld, a system combining a plugin-based virtual ”metaverse” with
user-controlled programmable multi-modal AI agents. The architecture leverages recent
advances in virtual worlds and web technologies, allowing the rendering and simulation to
be configured through a plugin and socket system.

Network participants and embodied agents interact in a shared simulation via standard-
ized web APIs accessible from a commodity web browser that can render 3D avatars in a
game engine.

ChatWorld offers real-time feedback to user and program actions, with multi-modal out-
put for both human interaction and processing with downstream computational pipelines.

We present experimental applications of our technology including an ”Infinite TV Show”
stream, a Multi-Actor community decision agent, and a realtime programming AI capable
of executing programs based on Twitch audience feedback.

A game prototype, Upstreet.ai, showcases the practicality of these ideas in a Massively
Multiplayer Online game development context.

We hope our findings and techniques can inspire AI researchers, virtual world creators,
and game developers in advancing positive collaboration between humans and AIs.

2 Introduction

2.1 Motivation

Generative AI systems are rapidly augmenting or replacing traditional methodologies for
solving human problems with computation.

Such solutions are driven by at least three major competing forces of system design:
Productivity: Productivity is a measure of the system’s ability to do useful work on

behalf of the user. For example, the user might ask ChatGPT to write piece of publishable
content, or they might use a Stable Diffusion prompt to generate a cover image. Productiv-
ity can further be divided into ”business productivity”, or the system’s abiltiy to perform
economically useful work, and ”entertainment”, or the tendency to invoke positive affect in
the user, whihc may be divorced from external economic value.

Generativity: Generativity is the ability of a system to exhibit behaviors which the
designer of the system did not forsee. Generativity is the defining characteristic of an AI
baased software system. This pseudorandom element distinguishes the control flow of AI
software from traditional heuristic-based programming models, though it also introduces
new problems and failure modes, such as hallucinations.

Steerability: Generativity is often contrasted with a system’s steerability, or its ability
to perform in the manner indicated by the user. This often takes the form of prompting by
the user, and involves an interplay between the user’s intentions and the design intentions

4

and restrictions imposed by the designer of the AI system. A great deal of effort (such as
prompt engineering, fint-tuning, and filtering) is spent on aligning goals between the designer
and user of the system.

A fundamental issue in generative AI systems is the balance of these forces in the delivery
of a useful product to the user. It has proven difficult to architect such systems using
traditional software development techniques, so recent research has focused on using layered
AI systems instead.

2.2 Agent Systems

A rapidly developing approach to aligning these competing goals is agent simulation systems,
which mimic human agents using large language models. Such systems demonstrably perform
far better than traditional heuristic system development techniques.

2.2.1 Multi-modal Agents

The adoption of single-user single-agent chatbot systems like ChatGPT has already provided
economic value in diverse domains through a simple chat-based interface.

Additionally, single-agent multimodal simulacra systems, such as PALM-E [2] and Avaer’s
AI agent [10] can reduce friction further by automating user input through environmen-
tal context. Image captioning and optical character recognition systems can be used in
near-realtime to feed context of the user’s environment (e.g. the screen, virtual camera, or
real-world camera) into the large language model loop, allowing the agent to respond appro-
priately to the environment perceived. In addition to chat/speech output, such systems can
be made to perform real-world actions via mechanisms like ”function calling” [7].

Limitations of the underlying sensor stack can result in perceptual inaccuracies – for
example, objects in the video stream may be misidentified (via BLIP-2) or misreading text
(via Doctr) in the provided video stream. Fusion over multiple frames provides for improved
results. Results improve further when combined memory and reflection processing layers
which can smooth out the noise in the sensor models.

Despite this, such models have been successful even when using a visual-to-language
embedding. Fidelity could be improved further by using visual embeddings, as with GPT-
4’s image multimodal functionality.

However, such agent systems suffer from several common problems owing to the single-
agent nature of the simulation.

First, it can be common to have unintended interaction loops owing to local stability of
the underlying language model – that is, the agent will focus on same topics repetitively,
breaking the suspension of disbelief and reducing the perceived and actual utility of the
model. This can be mitigated to an extent by introducing more entropy into the prompts,
for example, using long term memory.

Second, such systems must usually strike a balance between creative hallucination and
accurate reflection of ground truth. For example, it is straightforward to design an LLM
prompt that will produce imaginative speculations. Similarly, it is straightforward to design
a prompt that strictly adheres to the factual accuracy of the information provided in the
prompt. However, human thought tends to fall somewhere in the middle, with insights and

5

facts being fused into a coherent interaction, making prompt synthesis for such simulacra a
non-trivial balancing act.

Third, social interaction does not occur in a vacuum. Real-world action involves multiple
agents with differing goals interacting and competing in their pursuits. Each agent has their
own set of memories and perceptions that differ from those of other agents. The result of
a multi-agent interaction is often a compromise towards a more complex holistic goal than
can be achieved by a single agent.

Therefore simulation research has been branched out into using multi-agent simulations
to augment that attempt to overcome the shortcomings of single-agent simulations.

2.2.2 Multi-Agent Systems

Multi-agent simulations are composed of an LLM processing pipeline which accounts for
more than one agent’s actions during execution. In practice, this approach tends to produce
better results by leveraging the full context entropy window available to language models.

For example, before prompting an agent for an action to perform, we can collect their
memories and experiences interacting with their environment and other agents. Criteria for
inclusion into the prompt context can be based on embedding similarity heuristics, LLM
critic evaluation of importance and relevance, and similar techniques. Such context can
then be fed a ReAct system to formulate action plans, which can be further refined with a
Reflexion style summarization that allows the agent to consider the holistic impact of their
behavior. Prompt context derived in this manner has proved significantly more effective at
producing realistic agent behaviors.

An example of this strategy applied in a research environment is the virtual town simu-
lation of [8]. Memories, action plans, and reflection layers provide for significantly improved
perceived realism of the agent simulation.

In an entertainment context, SHOW-1 presents an abstracted multi-agent model simu-
lating a writer’s room and critic agents applied to virtual character storytelling. A layered
critic approach, combined with heuristics, provides a superior positive disconfirmation in the
viewer. [6].

MetaGPT demonstrates that multi-agent systems have real-world productivity applica-
tions and can be used to improve upon the state of the art in automated software devel-
opment. The interaction of role-based agents simulating the software development lifecycle
proves superior to single-agent simulations [3].

Given the success of applying multi-agent human simulation to these domains, it is likely
that such systems will find application in other domains as well. Significant trial-and-error
research is required to develop and test novwl implementations, and user deployment tends
to lag significantly behind the state of the art.

Often the research is published without code, leaving open source AI researchers to
develop a solution that can be experienced and evaluated by users. It is common for such
research to never find its way out of the lab.

We hope that our work can inspire open development of such systems, leveraging in-
teroperble frameworks using web technologies.

6

2.2.3 User agency

Multi-agent systems are most useful when they serve an end user need, such as entertainment
or a business output. To extract work from such a system, the user should be afforded a
large degree of control in determining the direction of the computation and its presentation.

One of the simplest and most powerful models of doing so is the definition of personalities
for agents taking part in the simulation.

In ChatWorld, agents are configured with biographical parameters inspired by the Sil-
lyTavern character card format [4]. This JSON-based format embeds textual data about a
character into a shareable image. The format allows for simple transfer of virtual character
personalities between users, or uploading to a shared database.

Additionally, users strongly prefer embodied agents with an audio-visual component over
purely textual representations. To account for this, ChatWorld allows for representation and
configurability of backing assets of a virtual character, supporting VRM, Live2D, Sprite360,
and Character Card Image formats.

ChatWorld abstracts the agent personality from the representational asset, simplifying
the workflow of character asset creation and editing.

2.2.4 Programmability

In addition to user steerability, AI systems must be adaptable to an increasingly meta-
programmatic paradigm owing to progression of the applicability of Large Language Models
to the production of useful programming code.

We have designed ChatWorld to be a pluggable system; Javascript components can be.
ChatWorld is a pluggable system designed to integrate multi-agent models in an acces-

sible, coherent, appealing, user-interactive agent simulation. The system can be configured
via modular plugins to execute arbitrary agent strategies, while standardizing retrieval, ren-
dering, simulation, and interface formats.

ChatWorld can load avatars in VRM, Live2D, character image (”Tavern character card”),
and sprite360 formats. 3D models can be provided as GLB, with physics computed auto-
matically.

Although the core of the agent simulation is text-based, the output of ChatWorld is
multi-modal and can be consumed by downstream services. The simulation can produce
an interactive video game world, a desktop companion application, an ”infinite anime” TV
show, or an AGI programming agent running on Twitch. We discuss these applications in
more detail in the Applications section.

2.3 Framework and Architecture

ChatWorld’s architecture consists of the following main components:

2.3.1 Agent Loop

We provide a default implementation of a multi-agent simulation loop, inspired by Generative
Agents [8], [9], and SHOW-1 [6].

7

2.3.2 Agent SDK

The Agent Model Interface allows agent models written in Javascript to execute and affect
the virtual world. We demonstrate our approach with software development kit (SDK)
demonstrating this approach. [1]

For example, the Generative Agents research paper, along with its multi-step prompt
loop, can be implemented and loaded as an agent model in ChatWorld. Multiple agents
models can run in parallel, allowing for simultaneous mixing and re-mixing of implementa-
tions, decreasing the time to test, debug, and visualize research.

Agent memory, perception, events, and agent action triggers are provied as system APIs.
A sandboxed JavaScript execution environment allows for a variety of oracle (external API)
and timing strategies to be implemented and experimented with.

2.3.3 Simulation Layer

ChatWorld provides a configurable 3D world simulation layer providing virtual embodiment
and spatialization of the agents.

This layer drives the simulation by managing the agent’s tick loops, implementing in-
world physics, and providing a framework for agent-agent, agent-user, and agent-world in-
teraction.

Agents are afforded a character controller, allowing them to move around the world and
interact with other agents, players, and objets in the world. Although the set of actions
currently available is rudimentary, it is straightforward to extend the simulation layer to
support a more complex set, with the LLM gracefully adapting to the expanded functionality.

Although the agent model is abstracted from the simulation layer and is independent of
three-dimensional concepts, the focus of the ChatWorld architecture is on 3D embodiment.
This approach allows for impedence match to the most common virtual environments (video
games, video footage, metaverses) and the real world (including augmented reality). Such an
approach allows for simpler translation of research and assets across platform and domains.
Although our simulation does not curerntly implement real-world embodiment, it is possible
to implement such a system using the provided APIs.

The simulation layer is responsible for ticking the registered agent models, allowing them
to make decisions and affect the world at a programmable rate.

2.3.4 Rendering Interface

ChatWorld provides a rendering interface that translates simulation state into an audio-
visual stream that can be displayed to the user or rendered for offline use.

The rendering interface is responsible for displaying a 3D representation of agents and
the environment, GUI overlays for controlling the simulation, and rendering real-time speech
and audio effects.

The ChatWorld rendering interface includes an LLM-controlled camera system, allowing
for automated focus when presenting output of the simulation.

8

2.3.5 Networking System

ChatWorld provides a networking system that allows for multiple users to connect to the
simulation and interact with the agents. The system is implemented as an spatially-mapped
cluster of CloudFlare Workers that can be scaled to support an arbitrary number of users
distributed throughout the game world.

The main scaling limitation of the network stack is the ability to render a significant
amount of users in the world at a time, since each user is represented by a 3D avatar. Our
implementation could be significantly optimized to account for this.

The system supports a CRDT-based Entity-Component-System for world objects resolu-
tion, as well as player and agent actions tracking. Positional data is interpolated client-side,
providing smooth replication for all connected clients, across arbitrary avatar actions. Text
chat is supported, and voice chat is streamed along with avatar visemes. Conflict resolu-
tion is done using an automatic ownership-based model ensuring eventual consistency of the
simulation.

Spatial handoff across the world space is accomplished through replication and dedupli-
cation of user data across arbitrary server realms. In our sample implementation, the keys
for the server realm handoff are based on the spatial coordinates of the user.

To effect smooth spatial transition across realms, the client connects to multiple servers
simulaneously, and replicates character data across them. Peer clients deduplicate the object
data, and the client seamlessly transitions between realms as the user moves through the
world.

2.4 Generative Assets

Although not part of the core ChatWorld loop, we used multi-modal generative models to
synthesize game assets. The code for this is available as part of our work.

The generative AI pipeline is both presentational and practical – renderings of assets can
be fed into the perception layer to extract language embeddings. These embeddings can be
used to affect the simulation by giving the virtual characters ”eyes in the world”.

Although we did not ultimately utilize much of this functionality in the current version,
the research has strongly informed the design of the system, and the directions we see such
systems evolving in the future.

2.5 Character Generation

Stable Diffusion fine-tuned image generation models seeded via a noise-based mask vector
can produce high-quality artistic results. We found that separate male and female noise
masks, made specifically for teh fine-tuned model worked best for consistently generating
character images.

Additional masking and generation is performed on the characters to synthesize mouth
flaps and affective facial expressions, which can be utilized at runtime by the rendering
system to provide an emotionally evocative output. A background removal AI model is used
to clip the character from the background for presentation in-world.

9

The resulting AI model produces prompted character synthesis with a high (¿90%) ac-
ceptance rate by the user. When combined with large language model prompt synthesis, it is
possible to establish an automated, narrative-driven pipeline of virtual avatar creation. We
chose a simple pseudo-3D anime style as the target format, in order to divorce the simulation
from the uncanny valley and allow for greater creative expression.

We use the Zero-1-to-3 image reprojection model [5] to generate multiple viewpoints of
the same character, which are selectively project based on the camera angle in a 3D sprite
based system. Although rudimentary, we found that the generated characters are sufficienlty
compelling that they can be used as-is in the simulation while maintaining suspension of
disbelief in the world.

An expanded implementation could leverage ControlNet or similar models to generate
additional character poses. These techniques have a natural extension to more complex
3D models, and we expect that future versions of systems like ChatWorld will be able to
accomodate more realistic styles.

The resulting image assets can be exported as a simple spritesheet.

2.6 World Generation

Virtual embodiment is a key component of believable agent systems. In order for virtual
characters to logically locomote using LLM-derived actions, they must present an under-
standing of their surroundings.

Large language models trained on storytelling media are good at comprehening settings
presented in a familiar format, such as a movie script. However, if the description does not
align with the user’s perception, the agent’s hallucinations can be jarring and spell-breaking
for the user.

Ultimately we chose to use a model based on simple descriptions of in-world assets,
leaving room for creative interpretation and positive disconfirmation. For example, agents
might describe the trees in the world as ”anime-style”.

However, research in world generation serves as a proof of concept for future work. The
ability to synthesize unlimited settings for the simulation expands the ability for agents to
traverse an infnite ”dreamworld” canvas which could be further.

2.6.1 Skybox Depth Model (Blockade Labs)

Blockade Labs provides a simple prompt-based model for synthesizing a 3D scene. This
model is straightforward to integrate into the pipeline, as the skybox depth provides for
rudimentary world physics ”for free”.

The fidelity of the generated art allows for agent inspection of their surroundings via a
BLIP-2 based perception stack. This allows agents to have an understanding of their location
within the skybox, and to be able to locomote to points of interest.

Additionally, it is quite simple to add seamless portals to the generated skyboxes, allowing
for generation of a continuous world for the agents to inhabit.

10

2.6.2 Comic Panel Depth Model (Midjourney + MiDaS + ZoeDepth)

Utilizing depth AI models, it is possible to produce a plausible comic-style virtual world
projection from an arbitrary image. This is a surprisingly simple process, involving the
simple depth deformation of an image based on the depth map.

The resulting scene allows a 3D character to walk around in an arbitrary 3D space. An
interesting application of this technology would be allowing a character to walk around in a
real-world photograph, or a drawn comic panel.

The primary challenges with our approach were:
- Detecting the ground navmesh and orienting the camera physics. This can be done

using floor/ground segmentation to detect the floor triangles, followed by a normal vector
alignment of the scene. This transformation allows the characters to stand ”right-side up”.
- Computing the camera intrinsics, allowing for proper projection of the 3D scene. For this,
we use a separate AI trained on camera intrinsic data. Surprisingly, this approach proves
to be quite accurate, and characters present well in the scene. - Scene bounding, ensuring
that characters are constrained within the panel when walking towards the camera. This
can be achieved by producing physics wall planes that conform to the extreme bounds of the
scene. Generally, four wall planes are required: camera backface, floor, and left and right
walls. We do not generate a top cap for the scene as it is generally not necessary to clip
characters from jumping upward in the scene. - Occlusion physics filling. Generally, the
straregy of using a single depth plane can present jarring occlusion physics when the native
physics triangulation approach is used. For example, an avatar may be unable to walk
befind a bookshelf even though it is intuitively clear from the art that they should be able
to do so. To counteract this unpleasant effeft, we detect large depth discontinuities in the
generated mesh triangles and use a top-down perspective render with those triangles clipped
out to generate a floor physics mesh below such discontinuities, but in accordance with the
detected. - Scene scaling. The MiDaS depth model originally used is not scale-invariant,
thought ZoeDepth is. Nonetheless, it is not easily possible to derive the scene scale without
proper ground truth as a reference point. This aspect proved the most challenging. We
ended up settling for manual user scene scaling UI when producing the asset.

One interesting and under-explored aspect of this style of generation is the use of ”3D
inpainting”, in which the 3D scene can be erased and polyfilledwith a futher depth pass, to
produce an infinitely generated 3D comic panel scene.

2.6.3 Continuous Guided Video Model (Deforum)

A different technique for generating procedural scenes is to use a continuous guided video
model such as Deforum.

Stable Diffusion can be used to synthesize arbitrary video scenes using a guided camera
pass producing video output, followed by a depth pass. Though the resulting scenes are
not perfectly stable, they exhibit interesting artistic qualities that could suffice for some use
cases.

11

2.6.4 Unguided video model (AnimateDiff)

AnimateDiff is a model that can be used to generate arbitrary short video clips from a single
prompt. While it is unguided, it can produce good artistic results.

2.7 Item Generation

Items can be generated in a similar manner to characters, though it is helpful to have a
model specifically fine-tuned for the purpose. We used a similar noise diffusion technique as
we use for characters, but with a different pattern more conducive to item image generation.

2.8 Audio Generation

Meta AI’s MusicGen model can produce creative audio syntheses from a single text prompt.
The model can be extended to produce audio of any length. Although it does not run in
realtime, it is a promising direction for the future of AI generated audio soundtracks that
can complement a scene.

2.9 Sound Effects Generation

Meta AI’s AudioGen model provides a similar API to MusicGen, but produces sound effects
instead of music. Results are similarly promising, and can drastically reduce the cost of
producing a sound effects library for a game.

3 Architecture Loop

The simulation is architected around a tickable agent model game loop. User inputs and
agent actions cause the registered agent models to react in progressing the simulation. It is
also possible for agent models to execute their own tick loop at arbitrary intervals, allowing
for asynchronous agent behaviors based on arbitrary rulesets and oracle queries (e.g. external
API access).

Actions and memories are logged for each agent in tbe memory database. This ac-
tion/memory database can be queried by a registered agent models for use in prompt syn-
thesis and production of agent actions to be executed by the simulation.

12

4 User Interface

The user interface component includes various input devices like the Keyboard, Mouse,
and Microphone, as described in the diagram. These devices communicate with an I/O
Controller, translating user actions into digital inputs.

• Screen: It’s the primary output device, displaying rendered content. The Video
Perception handles any visual processing required before passing the input to the I/O
Controller.

• User Actions: Generated by the I/O Controller, these are then forwarded to the
agent model to trigger specific behaviors.

4.1 System Interface

This part provides the context for agent models. It integrates the different elements that
define the state and environment of the virtual world.

• WorldState, ItemsState, CharactersState, Lorebooks: These provide the con-
text that encapsulates the entire state of the world, items within the world, characters,
and lore.

• MemoryDatabase: This is where conversations are stored, providing a historical
context that can be fed back into the system for richer interactions.

• Conversations: Integrated within the context, they are a vital part of the simulation’s
ongoing interaction history.

13

4.2 Language-Model-Led Modules (LLM)

• LLMPrompt: This forms the basis for language-model-led actions, feeding into the
ReAct and Reflexion parts of the agent model, and creating agent actions.

4.3 Agent Model Interface

This is the component where the agent’s behavior is defined, executed, and processed.

• Context: It includes all the information required by the agent model to make deci-
sions, including the world state, conversations, etc.

• AgentModel: This processes the context, constructs the LLMPrompt, and interacts
with the ReAct and Reflexion systems.

• AgentExecution: Triggers the agent model and updates the Renderer, reflecting
changes in the virtual world.

• AgentActions: These are the resultant actions executed by agents. They are stored
in the MemoryDatabase for future reference and are responsible for running the Agen-
tExecution.

4.4 Rendering Interface

• Renderer: This translates the simulation state into an audio-visual stream. It takes
updates from AgentExecution to reflect changes and outputs to the Screen.

5 Experimental Applications

ChatWorld’s extensible and modular nature makes it suitable for various applications in
entertainment, research, education, and more. Some notable applications include:

5.1 Companion Agent

5.2 Infinite TV Show

5.3 Interactive Virtual Game World

By leveraging the multi-agent simulation capabilities, ChatWorld can create a rich and dy-
namic virtual game world where players can interact with intelligent NPCs driven by state-
of-the-art AI models. The NPCs can learn, adapt, and react to player actions, providing a
unique and engaging gaming experience.

14

5.4 ”Infinite Anime” TV Show

ChatWorld’s rendering capabilities can be used to produce animated sequences for an ”in-
finite” TV show. There is precedent for such genrative AI entertainment. However, to the
best of our knowledge, no such system has been implemented in a multi-agent context.

5.5 AGI Programming Agent

5.5.1 Massively Multiplayer Online video game

6 Future direction

We have developed a primitive prototype of the ChatWorld system described in this research
paper, available at Upstreet.ai (https//upstreet.ai/).

There are many possible directions under which such a world could be developed.

6.0.1 Massively Multiplayer Online video game

ChatWorld initially started as a Massively Multiplayer Online video game concept, and the
current prototype is a proof of concept for such a game.

The promise of an infinitely generated virtual world video game inhabited by AIs is
compelling, as such a game might be able to run indefinitely without a playerbase, and could
might be able to survive without developer resources, as the agents could be programmed
to generate their own content and evolve the game.

6.0.2 Real-world embodiment

Such an agent system could be integrated with real-world perception in an augmented reality
space (e.g. Vision Pro), or a robotics context (e.g. Tesla Optimus bot). Though this
paper does not cover the mechanics of such an implementation, the high-level techniques
in this paper could find application in real-world perceptive agents that provide compelling
intelligent services to humans.

6.0.3 Financial imbuement

There could be deep economic ramifications if a system like ChatWorld were to be suc-
cessfully deployed in a real-world context. For example, the agents could be imbued with
cryptographically-signed financial assets like NFTs, and could be programmed to trade either
on behalf of their owners, or completely autonomously.

If such agents were able to purchase their own computing resources with their economic
gains, they could be able to bootstrap their own economic growth, and could potentially
become a significant economic force in the world.

15

7 Conclusion

We hope that the ideas presented here will be of interest to the generative AI and game de-
veloper communities, and that compelling virtual world games could leverage the techniques
presented.

7.1 Generative assets

7.2 World rendering

7.3 Visual Perception Loops

Description of the methods employed for rendering visual elements and how they interact
with the AI agents.

7.4 Generative AI Components

Detailing the generative algorithms used for creating images, videos, and audio within the
ChatWorld system.

7.5 Memory Subsystem

Explaining the mechanism for storing and retrieving information within ChatWorld, enabling
continuity and a personalized experience.

7.6 Real-time Rendering Interface

Discussion on the real-time rendering capabilities of ChatWorld, particularly in browser
environments.

7.7 Applications

7.7.1 Interactive Game World (”metaverse”)

7.7.2 Infinite TV Show

Discussion on the application of ChatWorld in creating an interactive and dynamic anime
series.

7.7.3 Autonomous Programming Agent (”Citrine”)

Description of the Citrine agent, its capabilities, and how it functions within ChatWorld.

7.8 Multi-actor Decision Agent (”Jedi Council”)

Exploration of how ChatWorld can facilitate complex multi-agent decision-making processes.

16

7.9 Blockchain integration

Minted tokens, give agents their own crypto.

7.10 Technical Performance

Analysis of the technical aspects of ChatWorld, such as rendering speed, response time, etc.

8 Future Directions

Discussion on potential future developments, enhancements, and areas for research within
the ChatWorld system.

9 Conclusion

Summarizing the key contributions of this paper, reflecting on the implications of ChatWorld,
and considering its potential impact on the field of virtual worlds and AI-driven simulations.

10 Acknowledgements

Any acknowledgements to collaborators, funding sources, etc.

11 References

References

[1] avaer m00n avaer. Upstreet: The upstreet package provides a set of tools and handy
abstractions for interacting with Upstreet. GitHub repository. 2023. url: https://
github.com/M3-org/upstreet.

[2] Danny Driess and Pete Florence. PaLM-E: An embodied multimodal language model.
Posted by Danny Driess, Student Researcher, and Pete Florence, Research Scientist,
Robotics at Google. Mar. 10, 2023. url: https://ai.googleblog.com/2023/03/
palm-e-embodied-multimodal-language.html.

[3] Sirui Hong et al. “MetaGPT: Meta Programming for Multi-Agent Collaborative Frame-
work”. In: arXiv preprint arXiv:2308.00352 (2023). doi: 10.48550/arXiv.2308.
00352. url: https://arxiv.org/abs/2308.00352.

[4] TAI Base by Humi et al. SillyTavern: a mobile-friendly, Multi-API (KoboldAI/CPP,
Horde, NovelAI, Ooba, OpenAI, OpenRouter, Claude, Scale), VN-like Waifu Mode,
Horde SD, System TTS, WorldInfo (lorebooks), customizable UI, auto-translate, and
more prompt options than you’d ever want or need. Based on a fork of TavernAI 1.2.8.
2023. url: https://github.com/SillyTavern/SillyTavern.

17

https://github.com/M3-org/upstreet
https://github.com/M3-org/upstreet
https://ai.googleblog.com/2023/03/palm-e-embodied-multimodal-language.html
https://ai.googleblog.com/2023/03/palm-e-embodied-multimodal-language.html
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.48550/arXiv.2308.00352
https://arxiv.org/abs/2308.00352
https://github.com/SillyTavern/SillyTavern

[5] Ruoshi Liu et al. “Zero-1-to-3: Zero-shot One Image to 3D Object”. In: arXiv preprint
arXiv:2303.11328 (2023). url: https://arxiv.org/pdf/2303.11328.pdf.

[6] Philipp Maas et al. To Infinity and Beyond: SHOW-1 and Showrunner Agents in Multi-
Agent Simulations. 2023. url: https://fablestudio.github.io/showrunner-
agents/.

[7] OpenAI. Function calling and other API updates. We’re announcing updates including
more steerable API models, function calling capabilities, longer context, and lower
prices. 2023. url: https://openai.com/blog/function-calling-and-other-api-
updates.

[8] Joon Sung Park et al. “Generative Agents: Interactive Simulacra of Human Behavior”.
In: arXiv preprint arXiv:2304.03442 (2023). arXiv:2304.03442v2 [cs.HC]. doi: 10.
48550/arXiv.2304.03442. arXiv: 2304.03442 [cs.HC]. url: https://arxiv.org/
abs/2304.03442.

[9] Guanzhi Wang et al. “Voyager: An Open-Ended Embodied Agent with Large Language
Models”. In: arXiv preprint arXiv:2305.16291 (2023). arXiv:2305.16291v1 [cs.AI]. doi:
10.48550/arXiv.2305.16291. arXiv: 2305.16291 [cs.AI]. url: https://arxiv.
org/abs/2305.16291.

[10] webmixedreality. Perception stack demo tweet. Twitter post. 2023. url: https://
twitter.com/webmixedreality/status/1685621040087552001.

18

https://arxiv.org/pdf/2303.11328.pdf
https://fablestudio.github.io/showrunner-agents/
https://fablestudio.github.io/showrunner-agents/
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://doi.org/10.48550/arXiv.2304.03442
https://doi.org/10.48550/arXiv.2304.03442
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2304.03442
https://doi.org/10.48550/arXiv.2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://twitter.com/webmixedreality/status/1685621040087552001
https://twitter.com/webmixedreality/status/1685621040087552001

12 Appendix

12.1 Image gallery

19

Figure 1: Citrine AGI Agent
Running Live on Twitch

Figure 2: Adventure Mode
for ChatWorld Figure 3: A game engine with

interactive avatars

Figure 4: Imaginative story
dialogue

Figure 5: A procedurally gen-
erated game world

Figure 6: In-engine lighting
effects 1

Figure 7: In-engine lighting
effects 2

Figure 8: In-world day-night
cycle

Figure 9: In-world custom
avatars

20

https://avaer.github.io/chatworld/videos/citrine.mp4

Figure 10: Animatediff can
generate compelling custom
animations

Figure 11: 3D items gener-
ated with stable diffusion and
Zero-123

Figure 12: Image segmenta-
tion allows for visual under-
standing of worlds

Figure 13: Blockade labs
depth-based skyboxes can
generate infinite linked
worlds

Figure 14: Embodied VRM
characters can exist in Block-
ade Labs worlds

Figure 15: The scale of Block-
ade Labs worlds can be vast

Figure 16: Avatars can wear
objects in the world

Figure 17: ”Citrine” artificial
general intelligence agent on
Twitch 1

Figure 18: ”Citrine” artificial
general intelligence agent on
Twitch 2

21

https://avaer.github.io/chatworld/images/animation.gif

Figure 19: ”Citrine” artificial
general intelligence agent on
Twitch 3 Figure 20: Items can be gen-

erated with Midjourney 1

Figure 21: Procedurally gen-
erated world base

Figure 22: The engine sup-
ports character facial expres-
sions

Figure 23: Image segmenta-
tion can be used to perceive
the world

Figure 24: Images depth can
be used to place characters
into artwork

Figure 25: Stable diffusion
character generation 1

Figure 26: Stable diffusion
character generation 2

Figure 27: Stable diffusion
character generation 3

22

Figure 28: Character base
image generation

Figure 29: Character 360
spritesheet generation

Figure 30: Character expres-
sions spritesheet generation

Figure 31: Guided stable dif-
fusion 1

Figure 32: Guided stable dif-
fusion 2

Figure 33: World generation
can support scene occlusion

Figure 34: Image depth ex-
trustion can support a large
range of depths

Figure 35: SAM + BlIP mod-
els can be used for in-world
understanding

Figure 36: Stable diffusion
character generation 1

Figure 37: Stable diffusion
character generation 2

23

Figure 38: Stable diffusion
character generation 3

Figure 39: Stable diffusion
character generation 4

Figure 40: Stable diffusion
character generation 5

Figure 41: Particle effects

Figure 42: Image segmenta-
tion over art

Figure 43: 2D images can be
processed into 3D worlds

Figure 44: 2D -¿ 3D comic
panel processing pipeline 1

Figure 45: 2D -¿ 3D comic
panel processing pipeline 2

Figure 46: 2D -¿ 3D comic
panel processing pipeline 3

24

Figure 47: 2D -¿ 3D comic
panel processing pipeline 4

Figure 48: 2D -¿ 3D image
pipeline editing

Figure 49: 2D -¿ 3D image
processing pipeline

Figure 50: 2D scene segmen-
tation

Figure 51: Procedurally gen-
erated story scenes 1

Figure 52: Procedurally gen-
erated story scenes 2

Figure 53: Procedurally gen-
erated story scenes 3

Figure 54: Realtime speech
input in engine

Figure 55: Characters scene

25

Figure 56: Procedurally gen-
erated wiki 1

Figure 57: Procedurally gen-
erated wiki 2 Figure 58: Procedurally gen-

erated wiki 3

26

	Abstract
	Introduction
	Motivation
	Agent Systems
	Multi-modal Agents
	Multi-Agent Systems
	User agency
	Programmability

	Framework and Architecture
	Agent Loop
	Agent SDK
	Simulation Layer
	Rendering Interface
	Networking System

	Generative Assets
	Character Generation
	World Generation
	Skybox Depth Model (Blockade Labs)
	Comic Panel Depth Model (Midjourney + MiDaS + ZoeDepth)
	Continuous Guided Video Model (Deforum)
	Unguided video model (AnimateDiff)

	Item Generation
	Audio Generation
	Sound Effects Generation

	Architecture Loop
	User Interface
	System Interface
	Language-Model-Led Modules (LLM)
	Agent Model Interface
	Rendering Interface

	Experimental Applications
	Companion Agent
	Infinite TV Show
	Interactive Virtual Game World
	"Infinite Anime" TV Show
	AGI Programming Agent
	Massively Multiplayer Online video game

	Future direction
	Massively Multiplayer Online video game
	Real-world embodiment
	Financial imbuement

	Conclusion
	Generative assets
	World rendering
	Visual Perception Loops
	Generative AI Components
	Memory Subsystem
	Real-time Rendering Interface
	Applications
	Interactive Game World ("metaverse")
	Infinite TV Show
	Autonomous Programming Agent ("Citrine")

	Multi-actor Decision Agent ("Jedi Council")
	Blockchain integration
	Technical Performance

	Future Directions
	Conclusion
	Acknowledgements
	References
	Appendix
	Image gallery

